Likelihood-based Vs Distance-based Evidential Classifiers

نویسندگان

  • Patrick Vannoorenberghe
  • Thierry Denoeux
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های طبقه‌بندی‌کننده حداکثر مشابهت و حداقل فاصله از میانگین در تهیه نقشه پوشش اراضی (مطالعه موردی: استان اصفهان)

Land cover maps derived from satellite images play a key role in regional and national land cover assessments. In order to compare maximum likelihood and minimum distance to mean classifiers, LISS-III images from IRS-P6 satellite were acquired in August 2008 from the western part of Isfahan. First, the LISS-III image was georeferenced. The Root Mean Square error of less than one pixel was the r...

متن کامل

Evidential Logistic Regression for Binary SVM Classifier Calibration

The theory of belief functions has been successfully used in many classification tasks. It is especially useful when combining multiple classifiers and when dealing with high uncertainty. Many classification approaches such as k-nearest neighbors, neural network or decision trees have been formulated with belief functions. In this paper, we propose an evidential calibration method that transfor...

متن کامل

IRDDS: Instance reduction based on Distance-based decision surface

In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...

متن کامل

Classification of Complex Urban Fringe Land Cover Using Evidential Reasoning Based on Fuzzy Rough Set: A Case Study of Wuhan City

Urban fringe is the transition zone fine grained with urban and non-urban land cover types. The complex landscape mosaic in this area challenges the land cover classification based on the remote-sensing data. Spectral signatures are not efficient to discriminate all pixels into classes. To improve the recognition and handle the uncertainty, this paper provides a novel integrated approach, based...

متن کامل

Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)

In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001